

Welcome to GPython’s documentation!

Experimental project which strives to provide
the possibility to create addons for Garry’s Mod with Python 3 programming language.

For Addon developers:

	Lua Reference

For GPython internal developers:

	Building
	Requirements for building

	Instructions

	Building documentation
	Requirements

	Instructions

	How GPython works
	1. Lua Launcher

	2. Realms’ DLLs

	3. Main GPython DLL: gpython.dll

	4. GPython wrappers

	5. gmod.lua module

	6. luastack module

	Internal modules
	luastack: Lua Stack manipulation

	streams: I/O to Garry’s Mod

Module Reference:

	lua: Lua interoperability

	net: communication between Client and Server

	player: player utilities

	entity: entity utilities

	realms: determining the current realm

	Internal modules

	Module Index

	Search Page

Useful links

	Contribute on GitHub [https://github.com/javabird25/GPython]

Lua Reference

You can interoperate with Python from Lua, for example, run arbitrary Python code.
All interop functions are in the py global table.

	
py.Exec(code)

	Executes a string of Python code.

py.Exec('print("HELLO".capitalize())') -- Will print "Hello" to the console

Building

Requirements for building

	Cython [http://cython.org]

	Visual Studio 2017 [https://visualstudio.microsoft.com]

Instructions

	Copy lua_launcher\gpython_launcher directory to garrysmod\addons directory.

	Open command prompt, cd to python_extensions directory and run setup.py build_ext --inplace.

	Move all files with .pyd extension in python_extensions directory to garrysmod\gpython directory.

	Copy python_extensions\gmod directory to garrysmod\gpython\gmod
(so there is a bunch of .py files in garrysmod\gpython\gmod directory).

	Open GPython.sln with Visual Studio and build the solution.

	Move gmsv_gpython_win32.dll and gmcl_gpython_win32.dll
from bin_modules\build directory to garrysmod\lua\bin directory.

	Move gpython.dll to Garry’s Mod’s root directory (where hl2.exe resides).

Final directory structure should looks like this:

...\SteamApps\GarrysMod\ ─┬─ hl2.exe
 ├─ ...
 ├─ gpython.dll
 ├─ garrysmod\ ─┬─ addons\ ─── gpython_launcher\ ─┬─ addon.json
 │ │ └─ lua\ ───── ...
 │ └─ lua\ ────── bin\ ──────────────┬─ gmsv_gpython_win32.dll
 │ └─ gmcl_gpython_win32.dll
 └─ gpython\ ───┬─ luastack.cpXX-win32.pyd
 └─ gmod\ ─────────────────────────┬─ __init__.py
 ├─ lua.py
 ├─ ...
 ...

See also

Building documentation

Building documentation

Requirements

	Spxinx [http://www.sphinx-doc.org]

	CorLab theme [https://pypi.org/project/sphinx-corlab-theme/]

Instructions

	Make sure that Sphinx is properly installed and built.

	Just run make html in a command prompt in docs\ directory.

Output is in docs_build\ directory.

How GPython works

Let’s suppose we have a simpliest “Hello World” GPython addon:

addons\ ─┬─ example\ ─┬─ addon.json
 ... ├─ python\ ─── __autorun__\ ─── __init__.py

__init__.py:

from gmod import *

Greeting the first player
print('Hello, ' + Player(1).nick + '!')

1. Lua Launcher

GPython’s Lua launcher is a regular Lua addon.
When it’s loaded by Garry’s Mod’s addon system, the launcher activates
gmcl_gpython_win32.dll and gmsv_gpython_win32.dll:

require 'gpython'

gmcl_gpython_win32.dll is for the client and gmsv_gpython_win32.dll is for the server.

2. Realms’ DLLs

These two DLLs call gpython_run() in gpython.dll.

3. Main GPython DLL: gpython.dll

gpython_run() does these preparation operations:

Server

	Adds luastack module to the builtin initialization table.

	Initializes Python interpreter.

	Appends garrysmod\gpython\ to sys.path [https://docs.python.org/3/library/sys.html#sys.path].

	Calls setup() in luastack thus setting the global lua stack pointer
and setting luastack.IN_GMOD to True.

	Redirects I/O to Garry’s Mod console with gmod.streams.

	Adds Lua2Python interoperability functions (using Python from Lua).

	Scans addons\ directory for GPython addons and runs their code.

Client

Client’s routine is the same as server’s except the step 2.

Instead of initializing Python again, a subinterpreter is created and swapped to.

4. GPython wrappers

Player is just a wrapper over the corresponding Lua functions,
as much as many other GPython services.

In this example, Player(1) creates an object that wraps Player Lua class. nick is a property that
gets players’ nicknames using Player:Nick() [http://wiki.garrysmod.com/page/Player/Nick] function.

This property looks like this:

@property
def nick(self):
 return str(self._player_luaobj['Nick']())

The Player internally uses gmod.lua.LuaObject to work with players.

5. gmod.lua module

gmod.lua module is itself a wrapper over luastack module. gmod.lua simplifies the interoperability
with Lua by providing LuaObject class and G singleton.

LuaObject internally uses the luastack module.

6. luastack module

luastack module manipulates the Lua stack. Lua stack pointer is
previously set by the C++ module.

And that’s it, our GPython addon is initialized. For me, Hello, Protocs! will be printed to console.

Internal modules

These modules are not intended to be used by addon developers.

	luastack: Lua Stack manipulation
	Lua Stack description

	Stack manipulation

	Special values

	Value types

	streams: I/O to Garry’s Mod

luastack: Lua Stack manipulation

Note

luastack is not a part of the gmod package. So, instead of:

from gmod.luastack import *

or:

from gmod import *
Trying to use luastack

you should use:

from luastack import *
Using luastack

This module contains functions for manipulating the Lua stack. The lowest level of Garry’s Mod Lua interoperability.

Lua Stack description

Lua uses a virtual stack to pass values to and from C.
Each element in this stack represents a Lua value (nil, number, string, etc.).

For convenience, most query operations in the API do not follow a strict stack discipline.
Instead, they can refer to any element in the stack by using an index:

	A positive index represents an absolute stack position (starting at 1)

	A negative index represents an offset relative to the top of the stack.

More specifically, if the stack has n elements, then index 1 represents the first element
(that is, the element that was pushed onto the stack first) and index n represents the last element;
index -1 also represents the last element (that is, the element at the top)
and index -n represents the first element.
We say that an index is valid if it lies between 1 and the stack top (that is, if 1 ≤ abs(index) ≤ top).

	
IN_GMOD

	Boolean constant which is True if GPython system is running during a Garry’s Mod session.
This constant is used in GPython libraries for preventing some code from executing when generating documentation.

	
ILuaBase *lua

	Pointer to Lua Stack C++ object. Not available to Python.

Being set by setup().

	
void setup(ILuaBase *lua)

	Sets the global lua pointer and IN_GMOD.

Stack manipulation

	
top()

	Returns the index of the top element in the stack.

Because indices start at 1,
this result is equal to the number of elements in the stack (and so 0 means an empty stack).

	
equal(a: int, b: int) → bool

	Returns True if the two values in acceptable indices a and b are equal,
following the semantics of the Lua == operator (that is, may call metamethods).
Otherwise returns False. Also returns False if any of the indices is non valid.

	
raw_equal(a: int, b: int) → bool

	Returns True if the two values in acceptable indices
a and b are primitively equal (that is, without calling metamethods).
Otherwise returns False. Also returns False if any of the indices are non valid.

	
insert(destination_index: int)

	Moves the top element into the given valid index, shifting up the elements above this index to open space.

	
throw_error(message: bytes)

	Raises a Lua error with the given bytes [https://docs.python.org/3/library/stdtypes.html#bytes] message.

It also adds at the beginning of the message the file name and the line number where the error occurred,
if this information is available.

	
create_table() → None

	Creates a new empty table and pushes it onto the stack.

	
push(stack_pos: int)

	

	
push_special(type: int)

	Pushes a special value onto the stack. Use Special enum.

	
push_nil()

	Pushes a nil value onto the stack.

	
push_number(num)

	Pushes a number num onto the stack.

	
push_string(val: bytes)

	Pushes a bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object onto the stack.

You can push str [https://docs.python.org/3/library/stdtypes.html#str] like this:

s = '...'
push_string(s.encode())

	
push_bool(val: bool)

	Pushes a boolean value val onto the stack.

	
pop(amt: int = 1) → None

	Pops amt elements from the stack.

	
clear()

	Clears the stack (pops all values).

	
get_table(stack_pos: int) → None

	Pushes onto the stack the value t[k], where t is the value at the given valid index stack_pos
and k is the value at the top of the stack.

This function pops the key from the stack (putting the resulting value in its place).

	
get_field(stack_pos: int, name: bytes) → None

	Pushes onto the stack the value t[name], where t is the value at the given valid index stack_pos.

	
set_table(stack_pos: int)

	Does the equivalent to t[k] = v,
where t is the value at the given valid index stack_pos,
v is the value at the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack.

	
set_field(stack_pos: int, name: bytes)

	Does the equivalent to t[k] = v,
where t is the value at the given valid index stack_pos
and v is the value at the top of the stack.

This function pops the value from the stack.

	
call(args: int, results: int)

	Calls a function.

To call a function you must use the following protocol:

	The function to be called is pushed onto the stack

	The arguments to the function are pushed in direct order; that is, the first argument is pushed first.

	You call this function; args is the number of arguments that you pushed onto the stack.

All arguments and the function value are popped from the stack when the function is called.
The function results are pushed onto the stack when the function returns.
The number of results is adjusted to results.
The function results are pushed onto the stack in direct order (the first result is pushed first),
so that after the call the last result is on the top of the stack.

The following example shows how the host program can do the equivalent to this Lua code:

a = f("how", t.x, 14)

Here it is with GPython’s luastack:

push_special(Special.GLOBAL)
get_field(1, "f") # function to be called
push_string("how") # 1st argument
get_field(1, "t") # table to be indexed
get_field(-1, "x") # push result of t.x (2nd arg)
remove(-2) # remove 't' from the stack
push_number(14) # 3rd argument
call(3, 1) # call 'f' with 3 arguments and 1 result
set_field(1, "a") # set global 'a'

Note that the code above is “balanced”: at its end, the stack is back to its original configuration.
This is considered good programming practice.

	
get_string(stack_pos: int = -1) → bytes

	Returns the bytes [https://docs.python.org/3/library/stdtypes.html#bytes] value of a string item at stack_pos index of the stack.

Negative values can be used for indexing the stack from top.

	
get_number(stack_pos: int = -1) → float

	Returns the float [https://docs.python.org/3/library/functions.html#float] value of a number item at stack_pos index of the stack.

Negative values can be used for indexing the stack from top.

	
get_bool(stack_pos: int = -1) → bool

	Returns the boolean value of a boolean item at stack_pos index of the stack.

Negative values can be used for indexing the stack from top.

	
create_ref() → int

	Saves the value at the top of the stack to a reference, pops it and returns the reference ID.

	
free_ref(ref: int)

	Frees the reference with ID ref.

	
push_ref(ref: int)

	Pushes the value saved in the reference with ID ref onto the stack.

	
get_type(stack_pos: int) → ValueType

	Returns ValueType
enum member which corresponds to the type of the value at index stack_pos of the stack.

	
get_type_name(type: ValueType) → str

	Returns a lowercase string representation of type type.

	
is_type(stack_pos: int, type: ValueType) → bool

	Returns True if the value’s type at index stack_pos is the same as type argument.

Special values

	
class Special(enum.enum)

	Enum of special values. The only practically usable value is Special.GLOBAL.

Special values can be pushed with push_special().

	
GLOBAL

	Represents the global Lua namespace (_G).

	
ENVIRONMENT

	Represents the environment table.

	
REGISTRY

	Represents the registry table. More data can be found in
Official Lua documentation [https://www.lua.org/pil/27.3.1.html].

Value types

	
class ValueType(enum.enum)

	Enum of Lua value types.

NIL,
BOOL,
LIGHTUSERDATA,
NUMBER,
STRING,
TABLE,
FUNCTION,
USERDATA,
THREAD,

UserData
ENTITY,
VECTOR,
ANGLE,
PHYSOBJ,
SAVE,
RESTORE,
DAMAGEINFO,
EFFECTDATA,
MOVEDATA,
RECIPIENTFILTER,
USERCMD,
SCRIPTEDVEHICLE,

Client Only
MATERIAL,
PANEL,
PARTICLE,
PARTICLEEMITTER,
TEXTURE,
USERMSG,

CONVAR,
IMESH,
MATRIX,
SOUND,
PIXELVISHANDLE,
DLIGHT,
VIDEO,
FILE

streams: I/O to Garry’s Mod

lua: Lua interoperability

net: communication between Client and Server

player: player utilities

entity: entity utilities

realms: determining the current realm

Internal modules

These modules are not intended to be used by addon developers.

	luastack: Lua Stack manipulation
	Lua Stack description

	Stack manipulation

	Special values

	Value types

	streams: I/O to Garry’s Mod

luastack: Lua Stack manipulation

Note

luastack is not a part of the gmod package. So, instead of:

from gmod.luastack import *

or:

from gmod import *
Trying to use luastack

you should use:

from luastack import *
Using luastack

This module contains functions for manipulating the Lua stack. The lowest level of Garry’s Mod Lua interoperability.

Lua Stack description

Lua uses a virtual stack to pass values to and from C.
Each element in this stack represents a Lua value (nil, number, string, etc.).

For convenience, most query operations in the API do not follow a strict stack discipline.
Instead, they can refer to any element in the stack by using an index:

	A positive index represents an absolute stack position (starting at 1)

	A negative index represents an offset relative to the top of the stack.

More specifically, if the stack has n elements, then index 1 represents the first element
(that is, the element that was pushed onto the stack first) and index n represents the last element;
index -1 also represents the last element (that is, the element at the top)
and index -n represents the first element.
We say that an index is valid if it lies between 1 and the stack top (that is, if 1 ≤ abs(index) ≤ top).

	
IN_GMOD

	Boolean constant which is True if GPython system is running during a Garry’s Mod session.
This constant is used in GPython libraries for preventing some code from executing when generating documentation.

	
ILuaBase *lua

	Pointer to Lua Stack C++ object. Not available to Python.

Being set by setup().

	
void setup(ILuaBase *lua)

	Sets the global lua pointer and IN_GMOD.

Stack manipulation

	
top()

	Returns the index of the top element in the stack.

Because indices start at 1,
this result is equal to the number of elements in the stack (and so 0 means an empty stack).

	
equal(a: int, b: int) → bool

	Returns True if the two values in acceptable indices a and b are equal,
following the semantics of the Lua == operator (that is, may call metamethods).
Otherwise returns False. Also returns False if any of the indices is non valid.

	
raw_equal(a: int, b: int) → bool

	Returns True if the two values in acceptable indices
a and b are primitively equal (that is, without calling metamethods).
Otherwise returns False. Also returns False if any of the indices are non valid.

	
insert(destination_index: int)

	Moves the top element into the given valid index, shifting up the elements above this index to open space.

	
throw_error(message: bytes)

	Raises a Lua error with the given bytes [https://docs.python.org/3/library/stdtypes.html#bytes] message.

It also adds at the beginning of the message the file name and the line number where the error occurred,
if this information is available.

	
create_table() → None

	Creates a new empty table and pushes it onto the stack.

	
push(stack_pos: int)

	

	
push_special(type: int)

	Pushes a special value onto the stack. Use Special enum.

	
push_nil()

	Pushes a nil value onto the stack.

	
push_number(num)

	Pushes a number num onto the stack.

	
push_string(val: bytes)

	Pushes a bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object onto the stack.

You can push str [https://docs.python.org/3/library/stdtypes.html#str] like this:

s = '...'
push_string(s.encode())

	
push_bool(val: bool)

	Pushes a boolean value val onto the stack.

	
pop(amt: int = 1) → None

	Pops amt elements from the stack.

	
clear()

	Clears the stack (pops all values).

	
get_table(stack_pos: int) → None

	Pushes onto the stack the value t[k], where t is the value at the given valid index stack_pos
and k is the value at the top of the stack.

This function pops the key from the stack (putting the resulting value in its place).

	
get_field(stack_pos: int, name: bytes) → None

	Pushes onto the stack the value t[name], where t is the value at the given valid index stack_pos.

	
set_table(stack_pos: int)

	Does the equivalent to t[k] = v,
where t is the value at the given valid index stack_pos,
v is the value at the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack.

	
set_field(stack_pos: int, name: bytes)

	Does the equivalent to t[k] = v,
where t is the value at the given valid index stack_pos
and v is the value at the top of the stack.

This function pops the value from the stack.

	
call(args: int, results: int)

	Calls a function.

To call a function you must use the following protocol:

	The function to be called is pushed onto the stack

	The arguments to the function are pushed in direct order; that is, the first argument is pushed first.

	You call this function; args is the number of arguments that you pushed onto the stack.

All arguments and the function value are popped from the stack when the function is called.
The function results are pushed onto the stack when the function returns.
The number of results is adjusted to results.
The function results are pushed onto the stack in direct order (the first result is pushed first),
so that after the call the last result is on the top of the stack.

The following example shows how the host program can do the equivalent to this Lua code:

a = f("how", t.x, 14)

Here it is with GPython’s luastack:

push_special(Special.GLOBAL)
get_field(1, "f") # function to be called
push_string("how") # 1st argument
get_field(1, "t") # table to be indexed
get_field(-1, "x") # push result of t.x (2nd arg)
remove(-2) # remove 't' from the stack
push_number(14) # 3rd argument
call(3, 1) # call 'f' with 3 arguments and 1 result
set_field(1, "a") # set global 'a'

Note that the code above is “balanced”: at its end, the stack is back to its original configuration.
This is considered good programming practice.

	
get_string(stack_pos: int = -1) → bytes

	Returns the bytes [https://docs.python.org/3/library/stdtypes.html#bytes] value of a string item at stack_pos index of the stack.

Negative values can be used for indexing the stack from top.

	
get_number(stack_pos: int = -1) → float

	Returns the float [https://docs.python.org/3/library/functions.html#float] value of a number item at stack_pos index of the stack.

Negative values can be used for indexing the stack from top.

	
get_bool(stack_pos: int = -1) → bool

	Returns the boolean value of a boolean item at stack_pos index of the stack.

Negative values can be used for indexing the stack from top.

	
create_ref() → int

	Saves the value at the top of the stack to a reference, pops it and returns the reference ID.

	
free_ref(ref: int)

	Frees the reference with ID ref.

	
push_ref(ref: int)

	Pushes the value saved in the reference with ID ref onto the stack.

	
get_type(stack_pos: int) → ValueType

	Returns ValueType
enum member which corresponds to the type of the value at index stack_pos of the stack.

	
get_type_name(type: ValueType) → str

	Returns a lowercase string representation of type type.

	
is_type(stack_pos: int, type: ValueType) → bool

	Returns True if the value’s type at index stack_pos is the same as type argument.

Special values

	
class Special(enum.enum)

	Enum of special values. The only practically usable value is Special.GLOBAL.

Special values can be pushed with push_special().

	
GLOBAL

	Represents the global Lua namespace (_G).

	
ENVIRONMENT

	Represents the environment table.

	
REGISTRY

	Represents the registry table. More data can be found in
Official Lua documentation [https://www.lua.org/pil/27.3.1.html].

Value types

	
class ValueType(enum.enum)

	Enum of Lua value types.

NIL,
BOOL,
LIGHTUSERDATA,
NUMBER,
STRING,
TABLE,
FUNCTION,
USERDATA,
THREAD,

UserData
ENTITY,
VECTOR,
ANGLE,
PHYSOBJ,
SAVE,
RESTORE,
DAMAGEINFO,
EFFECTDATA,
MOVEDATA,
RECIPIENTFILTER,
USERCMD,
SCRIPTEDVEHICLE,

Client Only
MATERIAL,
PANEL,
PARTICLE,
PARTICLEEMITTER,
TEXTURE,
USERMSG,

CONVAR,
IMESH,
MATRIX,
SOUND,
PIXELVISHANDLE,
DLIGHT,
VIDEO,
FILE

streams: I/O to Garry’s Mod

Index

 C
 | E
 | F
 | G
 | I
 | L
 | P
 | R
 | S
 | T
 | V

C

 	
 	call() (built-in function)

 	clear() (built-in function)

 	
 	create_ref() (built-in function)

 	create_table() (built-in function)

E

 	
 	ENVIRONMENT (Special attribute)

 	
 	equal() (built-in function)

F

 	
 	free_ref() (built-in function)

G

 	
 	get_bool() (built-in function)

 	get_field() (built-in function)

 	get_number() (built-in function)

 	get_string() (built-in function)

 	
 	get_table() (built-in function)

 	get_type() (built-in function)

 	get_type_name() (built-in function)

 	GLOBAL (Special attribute)

I

 	
 	IN_GMOD (built-in variable)

 	
 	insert() (built-in function)

 	is_type() (built-in function)

L

 	
 	lua (C++ member)

P

 	
 	pop() (built-in function)

 	push() (built-in function)

 	push_bool() (built-in function)

 	push_nil() (built-in function)

 	
 	push_number() (built-in function)

 	push_ref() (built-in function)

 	push_special() (built-in function)

 	push_string() (built-in function)

 	py.Exec() (built-in function)

R

 	
 	raw_equal() (built-in function)

 	
 	REGISTRY (Special attribute)

S

 	
 	set_field() (built-in function)

 	set_table() (built-in function)

 	
 	setup (C++ function)

 	Special (built-in class)

T

 	
 	throw_error() (built-in function)

 	
 	top() (built-in function)

V

 	
 	ValueType (built-in class)

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to GPython’s documentation!

 		
 Lua Reference

 		
 Building

 		
 Requirements for building

 		
 Instructions

 		
 Building documentation

 		
 Requirements

 		
 Instructions

 		
 How GPython works

 		
 1. Lua Launcher

 		
 2. Realms’ DLLs

 		
 3. Main GPython DLL: gpython.dll

 		
 Server

 		
 Client

 		
 4. GPython wrappers

 		
 5. gmod.lua module

 		
 6. luastack module

 		
 Internal modules

 		
 luastack: Lua Stack manipulation

 		
 Lua Stack description

 		
 Stack manipulation

 		
 Special values

 		
 Value types

 		
 streams: I/O to Garry’s Mod

 		
 lua: Lua interoperability

 		
 net: communication between Client and Server

 		
 player: player utilities

 		
 entity: entity utilities

 		
 realms: determining the current realm

 		
 Internal modules

 		
 luastack: Lua Stack manipulation

 		
 Lua Stack description

 		
 Stack manipulation

 		
 Special values

 		
 Value types

 		
 streams: I/O to Garry’s Mod

_static/ajax-loader.gif

